Inverse Problem and Estimates for Periodic Zakharov-Shabat systems
نویسنده
چکیده
Consider the Zakharov-Shabat (or Dirac) operator Tzs on L 2(R) L2(R) with real periodic vector potential q = (q1; q2) 2 H = L 2(T) L2(T). The spectrum of Tzs is absolutely continuous and consists of intervals separated by gaps (z n ; z + n ); n 2 Z. >From the Dirichlet eigenvalues mn; n 2 Z of the Zakharov-Shabat equation with Dirichlet boundary conditions at 0; 1, the center of the gap and the square of the gap length we construct the gap length mapping g : H ! `2 `2. Using nonlinear functional analysis in Hilbert spaces, we show that this mapping is a real analytic isomorphism. Our proof relies on new identities and estimates contained in the second part of the our paper.
منابع مشابه
Estimates on periodic and Dirichlet eigenvalues for the Zakharov–Shabat system
Consider the 2 × 2 first order system due to Zakharov-Shabat,
متن کاملEstimates for periodic Zakharov-Shabat operators
We consider the periodic Zakharov-Shabat operators on the real line. The spectrum of this operator consists of intervals separated by gaps with the lengths |gn| > 0, n ∈ Z. Let μn be the corresponding effective masses and let hn be heights of the corresponding slits in the quasimomentum domain. We obtain a priori estimates of sequences g = (|gn|)n∈Z, μ± = (μn )n∈Z, h = (hn)n∈Z in terms of weigh...
متن کاملAn Efficient Numerical Inverse Scattering Algorithm for Generalized Zakharov-Shabat Equations with Two Potential Functions
The inverse scattering problem for coupled wave equations has various applications such as waveguide filter design and electric transmission line fault diagnosis. In this paper, an efficient numerical algorithm is presented for solving the inverse scattering problem related to generalized Zakharov-Shabat equations with two potential functions. Inspired by the work of Xiao and Yashiro on Zakharo...
متن کاملTime-evolution-proof Scattering Data for the Focusing and Defocusing Zakharov-Shabat Systems
Nonlinear Schrödinger (NLS) equations have attracted the attention of the physical and mathematical community for over four decades. NLS equations arise in such diverse fields as deep water waves [4, 25], plasma physics [24], fiber optics [11], and Bose-Einstein condensation [17]. The basic method for solving the NLS initial-value problem is the inverse scattering transform (IST) method [2–4, 6...
متن کاملInverse scattering problems for first - order systems
In this thesis, the Zakharov-Shabat scattering problem and several types of Landau-Lifschitz scattering problems are considered. The inverse scattering problem is that of seeking one or more coefficients in a system of differential equation from the scattering data which, generally, consists of a reflection coefficient and bound state data. We assume mainly that the coefficients to be determine...
متن کامل